微信咨询
发布时间:2022-05-12 修改时间:2022-05-12 1197
安徽敏试教育小编根据大纲要求为您整理了:高中数学基础知识:二次函数。安徽教师资格网还为您提供了精彩的教案示范,更多面试资讯欢迎关注敏试教育。
【知识点】
一、基本定义
一般地,把形如y=ax^2+bx+c(其中a,b,c是常数,a≠0,bc可以为0)的函数叫做二次函数(quadratic function),其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。二次函数图像是轴对称图形。对称轴为直线x=-b/2a。顶点坐标[-b/2a,(4ac-b^2)/4a]交点式为y=a(X-x1)(X-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]
注意:“变量”不同于“自变量”,不能说“二次函数是指自变量的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在实数范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别.如同函数不等于函数的关系。
二、函数性质
1.二次函数是抛物线,但抛物线不一定是二次函数。开口向上或者向下的抛物线才是二次函数。抛物线是轴对称图形。对称轴为直线x = -b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)[1]
2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数:Δ= b^2-4ac>0时,抛物线与x轴有2个交点。Δ= b²-4ac=0时,抛物线与x轴有1个交点。当Δ= b²-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b²-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变;
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)。
三、函数表达
1.一般式
y=ax²+bx+c(a≠0,a、b、c为常数),顶点坐标为 [-b/2a,(4ac-b²)/4a]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
2.顶点式
y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k.有时题目会指出让你用配方法把一般式化成顶点式。
3.交点式
y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
4.双根式
y=a(x-x1)*(x-x2)
【推荐资料】
扫描二维码,关注微信:安徽敏试教育
回复【面试真题】,查看更多安徽教资面试真题内容
资格复审 发布时间:2022-01-20
认定公告 发布时间:2022-08-18
招聘公告 发布时间:2021-11-13
资格复审 发布时间:2022-01-20
面试公告 发布时间:2022-03-14
认定公告 发布时间:2022-08-18
复制成功
您已成功复制微信号,现在前往微信搜索该微信号进行咨询。