微信咨询

分享
刷新

高中数学基础知识:最大公因数

发布时间:2022-05-12 修改时间:2022-05-12 852

安徽敏试教育小编根据大纲要求为您整理了:高中数学基础知识:最大公因数安徽教师资格网为您提供了精彩的教案示范,更多面试资讯欢迎关注敏试教育。

安徽敏试教育.jpg

【知识点】

一、基本介绍

最大公约数,指某几个整数共有因子中最大的一个。

能够整除一个整数的整数称为其的约数(如5是10约数);

能够被一个整数整除的整数称为其的倍数(如10是5的倍数);

如果一个数既是数A的约数,又是数B的约数,称为A,B的公约数,A,B的公约数中最大的一个(可以包括AB自身)称为AB的最大公约数。

二、定义

如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数。几个自然数公有的约数,叫做这几个自然数的公约数。公约数中最大的一个公约数,称为这几个自然数的最大公约数。

辗转相除法是古希腊求两个正整数的最大公约数的,也叫欧几里德算法,其方法是用较大的数除以较小的数,上面较小的除数和得出的余数构成新的一对数,继续做上面的除法,直到出现能够整除的两个数,其中较小的数(即除数)就是最大公约数。

三、性质

1.交换律:

gcd(a,b)=gcd(b,a) (交换律)

gcd(-a,b)=gcd(a,b)

gcd(a,a)=|a|

gcd(a,0)=|a|

gcd(a,1)=1

gcd(a,b)=gcd(b, a mod b)

gcd(a,b)=gcd(b, a-b)

2.分配律:

如果有附加的一个自然数m,则: gcd(ma,mb)=m * gcd(a,b) (分配律)

gcd(a+mb ,b)=gcd(a,b)

如果m是a和b的最大公约数,则: gcd(a/m ,b/m)=gcd(a,b)/m



【推荐资料】

扫描二维码,关注微信:安徽敏试教育

回复【面试真题】,查看更多安徽教资面试真题内容

安徽logo.jpg

小编推荐
热门推荐
我是有底线的

复制成功

您已成功复制微信号,现在前往微信搜索该微信号进行咨询。